Similarity solution of the Boundary layer equation

V. Ganesh

Department of Aerospace Engineering
Indian Institute of Technology, Madras

17 December 2007
VI Indo-German Winter Academy 2007
IIT Guwahati
Outline

1. Boundary Layer equation
 - Boundary Layer
 - Order of Magnitude analysis

2. Similarity solution
 - Scaling

3. Falkner Skan Transformation
 - Boundary conditions
 - Method of solution

4. Thermal Boundary layers
 - Thermal Boundary layer equation
Outline

1. Boundary Layer equation
 - Boundary Layer
 - Order of Magnitude analysis

2. Similarity solution
 - Scaling

3. Falkner Skan Transformation
 - Boundary conditions
 - Method of solution

4. Thermal Boundary layers
 - Thermal Boundary layer equation
Boundary Layer

- Classical problem: Flow past a flat plate at zero angle of attack
- Prandtl's hypothesis
- Characteristic length scales
 - $x, \Delta x \sim L$
 - $y, \Delta y \sim \delta$
 - $u \sim V_\infty$

Figure: A typical boundary layer
Outline

1. **Boundary Layer equation**
 - Boundary Layer
 - Order of Magnitude analysis

2. **Similarity solution**
 - Scaling

3. **Falkner Skan Transformation**
 - Boundary conditions
 - Method of solution

4. **Thermal Boundary layers**
 - Thermal Boundary layer equation
Order of Magnitude analysis

- Continuity equation - Incompressible flow

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \implies v \sim \frac{V_\infty \delta}{L} \]

- U momentum equation

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{1}{\rho} \frac{\partial P}{\partial x} = \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \]

\[\begin{align*}
 u \frac{\partial u}{\partial x} & \sim \frac{V_\infty^2}{L} \\
 v \frac{\partial u}{\partial y} & \sim \frac{V_\infty^2}{L} \\
 \frac{1}{\rho} \frac{\partial P}{\partial x} & \sim ? \\
 \nu \frac{\partial^2 u}{\partial x^2} & \sim \frac{1}{Re^{3/2}} \frac{V_\infty^2}{L} \\
 \nu \frac{\partial^2 u}{\partial y^2} & \sim \nu \frac{V_\infty}{\delta^2}
\end{align*} \]
Order of Magnitude analysis (contd.)

\[
\text{Is } \nu \frac{V_\infty}{\delta^2} \sim \frac{V_\infty^2}{L} \text{? }
\]

If \(\nu \frac{V_\infty}{\delta^2} \ll \frac{V_\infty^2}{L} \rightarrow \text{Euler equation} \)

If \(\nu \frac{V_\infty}{\delta^2} \gg \frac{V_\infty^2}{L} \rightarrow \text{Hele Shaw flow} \)

In the B.L, we have \(\nu \frac{V_\infty}{\delta^2} \sim \frac{V_\infty^2}{L} \Rightarrow \frac{\delta}{L} \sim \frac{1}{\sqrt{Re}} \)
Order of Magnitude analysis (contd.)

- Hence the u-mom equation reduces to

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{1}{\rho} \frac{\partial P}{\partial x} = \nu \frac{\partial^2 u}{\partial y^2} \]

- v-mom equation

\[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{1}{\rho} \frac{\partial P}{\partial y} = \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \]

- Compared to the u-mom equation, all the terms are small.

Like \(\frac{V^2 \delta}{L^2} \), \(\frac{\nu V^2}{L^2} \) etc.
Order of Magnitude analysis (contd.)

- What v-mom equation tells us is $\frac{\partial P}{\partial y} = 0$ in the B.L
- External pressure \rightarrow imposed on the surface.
- Analogy with ant crawling on a surface
- In the external flow field (inviscid, potential flow)

$$Pe + \frac{1}{2} \rho v_e^2 = const \implies \frac{1}{\rho} \frac{dP_e}{dx} = U_e \frac{dU_e}{dx}$$

- B.L responds to external flow through the imposed pressure
Outline

1. Boundary Layer equation
 - Boundary Layer
 - Order of Magnitude analysis

2. Similarity solution
 - Scaling

3. Falkner Skan Transformation
 - Boundary conditions
 - Method of solution

4. Thermal Boundary layers
 - Thermal Boundary layer equation
The velocity profiles $U(x_1)$ and $U(x_2)$ differ only by a scale factor

- $U_\infty \rightarrow$ Obvious scale factor for u
- New co-ordinate \rightarrow Dimensionless \rightarrow scale factor $g(x)$
- $u = u(U_\infty, \nu, x, y) \rightarrow$ 5 variables in 2 dimensions
- Dimensional analysis \rightarrow dimensionless quantity in 3 variables
Scaling

- The velocity profiles $U(x_1)$ and $U(x_2)$ differ only by a scale factor.
- $U_\infty \rightarrow$ Obvious scale factor for u
- New co-ordinate \rightarrow Dimensionless \rightarrow scale factor $g(x)$
- $u = u(U_\infty, \nu, x, y) \rightarrow$ 5 variables in 2 dimensions
- Dimensional analysis \rightarrow dimensionless quantity in 3 variables
Scaling

- The velocity profiles $U(x_1)$ and $U(x_2)$ differ only by a scale factor
- $U_\infty \rightarrow$ Obvious scale factor for u
- New co-ordinate \rightarrow Dimensionless \rightarrow scale factor $g(x)$
- $u = u(U_\infty, \nu, x, y) \rightarrow$ 5 variables in 2 dimensions
- Dimensional analysis \rightarrow dimensionless quantity in 3 variables
The velocity profiles $U(x_1)$ and $U(x_2)$ differ only by a scale factor

$U_\infty \rightarrow$ Obvious scale factor for u

New co-ordinate \rightarrow Dimensionless \rightarrow scale factor $g(x)$

$u = u(U_\infty, \nu, x, y) \rightarrow$ 5 variables in 2 dimensions

Dimensional analysis \rightarrow dimensionless quantity in 3 variables
Scaling (contd.)

- Need to retain \(y \) as it is. Variable to be scaled. Can’t use ‘\(u \)’ as well.

- Hence

\[
\frac{u}{U_\infty} = F \left(\frac{y}{\delta} \right) = F \left(\frac{y}{\sqrt{\nu x / U_\infty}} \right)
\]

\[
\delta = \sqrt{\frac{\nu x}{U_\infty}} \quad \eta = \frac{y}{\sqrt{\nu x / U_\infty}}
\]
Scaling (contd.)

Getting the stream function

\[\psi = \int u dy = \int U_\infty F(\eta) \sqrt{\frac{\nu x}{U_\infty}} \, d\eta = \sqrt{U_\infty \nu x} \int F(\eta) \, d\eta \]

\[\psi = \sqrt{U_\infty \nu x} f(\eta) + C \]
Falkner Skan Transformation

\[
\begin{align*}
 u &= \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial y} = u_e f' \\
 v &= -\frac{\partial \psi}{\partial x} = \frac{f'}{2x} u_e y - \frac{f' y}{2} \frac{d u_e}{d x} - \frac{1}{2} \sqrt{\frac{\nu u_e}{x}} \, f \\
\end{align*}
\]

U mom equation becomes (an ODE !!)

\[
\frac{d u_e}{d x} \left(f'^2 - 1 \right) - \frac{f'''}{2} \left(\frac{u_e}{x} + \frac{d u_e}{d x} \right) = \frac{u_e}{x} f'''
\]

This equation gets greatly simplified if \(\frac{d u_e}{d x} = m \frac{u_e}{x} \)
Falkner Skan Transformation

\[u = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial y} = u_e f' \]

\[v = -\frac{\partial \psi}{\partial x} = \frac{f'}{2} u_e y - \frac{f' y}{2} \frac{du_e}{dx} - \frac{1}{2} \sqrt{\nu u_e x} f \]

U mom equation becomes (an ODE !!)

\[\frac{du_e}{dx} (f'^2 - 1) - \frac{ff'''}{2} \left(\frac{u_e}{x} + \frac{du_e}{dx} \right) = \frac{u_e}{x} f''' \]

This equation gets greatly simplified if \(\frac{du_e}{dx} = m \frac{u_e}{x} \)
Falkner Skan Transformation

\[u = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial y} = u_{e}f' \]

\[v = -\frac{\partial \psi}{\partial x} = \frac{f'}{2x} u_{e}y - \frac{f' y}{2} \frac{du_{e}}{dx} - \frac{1}{2} \sqrt{\frac{v u_{e}}{x}} \frac{f}{u_{e}} \]

U mom equation becomes (an ODE !!)

\[\frac{du_{e}}{dx} \left(f'^{2} - 1 \right) - \frac{ff'''}{2} \left(\frac{u_{e}}{x} + \frac{du_{e}}{dx} \right) = \frac{u_{e}}{x} f''' \]

This equation gets greatly simplified if \(\frac{du_{e}}{dx} = m \frac{u_{e}}{x} \)
Falkner Skan Transformation (contd.)

- \(\frac{du_e}{dx} = m \frac{u_e}{x} \rightarrow \text{Actual flows?} \)
- \(u_e = Ax^m \rightarrow \text{Flow past a wedge of included angle } \beta \)

Figure: Wedge flow configuration
Blasius and Hiemenz flow

- Case $m = 0 \rightarrow$ Blasius flow
 \[2f_{\eta\eta\eta} + ff_{\eta\eta} = 0 \]

- Case $m = \pi \rightarrow$ Stagnation point flow (Hiemenz flow)
 \[f_{\eta\eta\eta} + ff_{\eta\eta} - f_{\eta}^2 + 1 = 0 \]
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Boundary Layer equation</td>
</tr>
<tr>
<td>• Boundary Layer</td>
</tr>
<tr>
<td>• Order of Magnitude analysis</td>
</tr>
<tr>
<td>2 Similarity solution</td>
</tr>
<tr>
<td>• Scaling</td>
</tr>
<tr>
<td>3 Falkner Skan Transformation</td>
</tr>
<tr>
<td>• Boundary conditions</td>
</tr>
<tr>
<td>• Method of solution</td>
</tr>
<tr>
<td>4 Thermal Boundary layers</td>
</tr>
<tr>
<td>• Thermal Boundary layer equation</td>
</tr>
</tbody>
</table>
Boundary conditions

- No slip wall \(u = 0 \) and Rigid wall \(v = 0 \) @ \(y = 0 \)
 \[f'(\eta) = 0 = f(\eta) \] @ \(\eta = 0 \)

- Integration with Free Stream velocity @ \(y = \infty \), \(u = U_\infty \)
 \[@ \eta = \infty, f'(\eta) = 1 \]
Boundary conditions

- No slip wall \(u = 0 \) and Rigid wall \(v = 0 \) @ \(y = 0 \)
 \(\Rightarrow f'(\eta) = 0 = f(\eta) \) @ \(\eta = 0 \)

- Integration with Free Stream velocity @ \(y = \infty \), \(u = U_\infty \)
 \(\Rightarrow @ \ \eta = \infty \), \(f'(\eta) = 1 \)
Outline

1. Boundary Layer equation
 - Boundary Layer
 - Order of Magnitude analysis

2. Similarity solution
 - Scaling

3. Falkner Skan Transformation
 - Boundary conditions
 - Method of solution

4. Thermal Boundary layers
 - Thermal Boundary layer equation
Series solution

\[f(\eta) = A_0 + A_1 \eta + \frac{A_2}{2!} \eta^2 + \frac{A_3}{3!} \eta^3 + \frac{A_4}{4!} \eta^4 + \ldots \]

- Resembles Frobenius method of solution
- Local solution - Series expanded about \(\eta = 0 \)
- \(\eta = 0 \) → Region of interest → \(C_f \) → Skin friction coefficient
Numerical solution

- Lets take Blasius eqn $2f''' + ff'' = 0$ Rewrite as

 \[
 f' = G \\
 G' = H \\
 H' = -\frac{1}{2}f H
 \]

- Want an initial value problem. $f(0) = G(0) = 0$
- $H(0)$ not known \rightarrow Use SHOOTING technique
- Approximate $\eta = \infty$ @ $\eta = 10$
Velocity profile - Blasius flow

![Solution of the Blasius equation](image)

Figure: Velocity profile for Blasius flow
Outline

1. Boundary Layer equation
 - Boundary Layer
 - Order of Magnitude analysis

2. Similarity solution
 - Scaling

3. Falkner Skan Transformation
 - Boundary conditions
 - Method of solution

4. **Thermal Boundary layers**
 - Thermal Boundary layer equation
Thermal Boundary layer equation

- Similarity solution → general technique. Other problems as well.
- Velocity Boundary layer - Convective Vs Viscous momentum transport
- Thermal Boundary layer - Convective Vs Conductive heat transfer
The 2D Steady state energy equation without pressure work and viscous dissipation

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \]

\[\psi = \sqrt{U_\infty \nu x} \cdot f(\eta) \]

\[\theta = \frac{T - T_w}{T_\infty - T_w} \quad \eta = \frac{y}{\sqrt{\frac{\nu x}{U_\infty}}} \]

Order of mag analysis → \(\frac{\partial^2 T}{\partial x^2} \) can be neglected
Transformation

- $T_w = \text{constant}$ - Simplifying assumption

\[
\frac{\partial \theta}{\partial x} = \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial x} = \theta' \left(-\frac{1}{2x} \sqrt{\frac{U_e}{\nu x}} y + \frac{1}{2} \frac{u}{\sqrt{U_e \nu x}} \frac{dU_e}{dx} \right)
\]

\[
\frac{\partial \theta}{\partial y} = \frac{\partial \theta}{\partial \eta} \frac{\partial \eta}{\partial y} = \theta' \left(\sqrt{\frac{U_e}{\nu x}} \right) \quad \frac{\partial^2 \theta}{\partial y^2} = \frac{U_e}{\nu x} \theta''
\]
Transformation

- $T_w = constant$ - Simplifying assumption

$$\frac{u_e \theta''}{x \Pr} + \frac{f \theta'}{2} \left(\frac{u_e}{x} + \frac{du_e}{dx} \right) = 0$$

- Choose $\frac{du_e}{dx} = m \frac{u_e}{x}$

$$\theta'' + \frac{Pr}{2} (m + 1) f \theta' = 0$$
Solution

- $f \rightarrow$ Known from previous problem
- Let $\theta' = G$ Becomes first order ODE

$$G' + \frac{(m+1)Pr}{2} f G = 0$$

- Choose

$$I.F = \exp \left(\int_0^\eta \frac{m+1}{2} Pr f d\eta \right)$$

- We get

$$\theta' = C_1 \exp \left(- \int_0^\eta \frac{m+1}{2} Pr f d\eta \right)$$

- Integrate again and apply B.C’s
Final solution

\[\theta = \frac{\int_0^n \exp \left(-\int_0^n \frac{m+1}{2} Pr f \, d\eta \right) \, d\eta}{\int_0^\infty \exp \left(-\int_0^n \frac{m+1}{2} Pr f \, d\eta \right) \, d\eta} \]
Summary

- Self-similar solutions to PDE’s can be obtained.
- Appropriate scaling of co-ordinates.
- Convert PDE’s to ODE’s
Summary

- Self-similar solutions to PDE’s can be obtained.
- Appropriate scaling of co-ordinates.
- Convert PDE’s to ODE’s
Summary

- Self-similar solutions to PDE’s can be obtained.
- Appropriate scaling of co-ordinates.
- Convert PDE’s to ODE’s