Towards Highly Efficient Monolithic DC/DC Converter

Rakshit Agarwal
4th year electrical Student
Indian Institute of Technology Madras
Guide: Prof. Heiner Ryssel
Towards Highly Efficient Monolithic DC/DC Converter

Outline

• Introduction
• Types of switching regulators
• Structure of monolithic converter
• Method of operation of various parts of the converter
• Integration of inductor on chip
• Integration of capacitor on chip
• Power losses in the converter
• Power flow analysis
• Issues in monolithic DC/DC converter
• Techniques to improve performance
 • Light load efficiency
Towards Highly Efficient Monolithic DC/DC Converter

Outline

- Introduction
- Types of switching regulators
 - Buck converter
 - Boost converter
 - Buck-Boost converter
- Structure of monolithic converter
- Method of operation of various parts of the converter
- Integration of inductor on chip
- Integration of capacitor on chip
- Power losses in the converter
- Power flow analysis
- Issues in monolithic DC/DC converter
- Techniques to improve performance
 - Light load efficiency
Introduction

What is a DC/DC Converter?
- A device that accepts a DC input voltage and produces a DC output voltage

Used to provide:
- Noise isolation
- Power bus regulation etc.
- Output at different voltage level
- Wide input voltage range but a constant output voltage
Introduction

- Battery-operated portable electronic devices such as cellular phones, personal digital assistants (PDAs)
- Highly efficient low-voltage switch-mode DC–DC converters are mandatory in these devices
- Also used for hybrid vehicles, solar cells and underwater cables
- Main motive is to maximize system run time (high efficiency) and decrease the volume of the converters
- Trend is to focus on the CMOS implementation of low-power converters such that power management and mixed-signal circuitries can be fabricated on the same chip
Towards Highly Efficient Monolithic DC/DC Converter

Linear Regulator

- Extremely inefficient (depending on voltage drop!)
- High heat dissipation
- Bulky and expensive heat sink
- Impossible for SOC design
- Reduce battery life
- No switching noise
Towards Highly Efficient Monolithic DC/DC Converter

Switching Regulator

- Takes small chunk of energy from input & transfer to the output
- Uses electrical switch & controller to regulate rate of energy
- High efficiency
- Use in portable devices - cell phones, laptops, robots, etc.
- Smaller size
- Lower heat generation
- Suitable for on chip design

Disadvantages
- Complex system design
- High frequency electrical noise
- Ripple voltage at switching frequency
Towards Highly Efficient Monolithic DC/DC Converter

Outline

• Introduction
• Types of switching regulators
• Structure of monolithic converter
• Method of operation of various parts of the converter
• Integration of inductor on chip
• Integration of capacitor on chip
• Power losses in the converter
• Power flow analysis
• Issues in monolithic DC/DC converter
• Techniques to improve performance
 • Light load efficiency
Types of Switch Mode Regulators

- Buck converter-step-down converter
- Boost converter-step-up converter
- Buck Boost converter

Many other configurations also exist like:
- Cuk converter
- Isolated converters:
 - Flyback converter
 - Forward converter
 - Full-Half bridge converter
Towards Highly Efficient Monolithic DC/DC Converter

Types of Switch Mode Regulators

Fig. Buck converter.

Fig. Boost converter.

Fig. Flyback converter.

Fig. Cuk converter.
Towards Highly Efficient Monolithic DC/DC Converter

Buck Converter

- **When Transistor ‘ON’**
 - Inductor current rises

- **When Transistor ‘OFF’**
 - Current through inductor passes through the diode

- **Modes of operation:**
 - Continuous mode
 - Transition between continuous & discontinuous mode
 - Discontinuous mode

Rakshit Agarwal - IIT Madras
Buck Converter

- **Continuous Mode**

\[
V_x - V_o = L \frac{di}{dt}
\]

- The change in current satisfies

\[
di = \int_{0^N} (V_x - V_o) \, dt + \int_{0^F} (V_x - V_o) \, dt
\]

- For steady state operation

\[
di = 0 = \int_{0^N} (V_x - V_o) \, dt + \int_{0^F} (V_x - V_o) \, dt
\]

- Hence,

\[
\frac{V_o}{V_{in}} = \frac{ton}{T}
\]
Towards Highly Efficient Monolithic DC/DC Converter

Buck Converter

Transition between Continuous & Discontinuous Mode

- Inductor current just goes to zero

Now, during the ON time \(V_{in} - V_{out}\) is across the inductor thus

\[I_L(\text{peak}) = (V_{in} - V_{out}) \frac{t_{ON}}{L} \]

The average current which must match the output current satisfies

\[I_L(\text{average at transition}) = \frac{I_L(\text{peak})}{2} = (V_{in} - V_{out}) \frac{dT}{2L} \]

\[= I_{out}(\text{transition}) \]

Where, duty ratio, \(d = \frac{t_{ON}}{T} \)

\[I_{out}(\text{transition}) = V_{in} \frac{(1 - d)d}{2L} \]

Rakshit Agarwal- IIT Madras
Buck Converter

Discontinuous Mode

- Transistor OFF time divided into:
 - segments of diode conduction ddT
 - zero conduction doT
- The inductor average voltage gives:
 \[
 (V_{in} - V_o)dt + (-V_o)\delta_d T = 0
 \]
 \[
 \frac{V_{out}}{V_{in}} = \frac{d}{d + \delta_d}
 \]
- To resolve the value of consider the output current:
 \[
 i_{out} = \frac{i_L(peak)}{2} d + \delta_d
 \]
Buck Converter

- **Discontinuous Mode**
 - Solving for the diode conduction
 - defining \(k^* = \frac{2L}{(VinT)} \)

- **Output voltage vs. Current**
 - At high Output current, voltage ratio depends on the duty ratio "d"
 - At low currents discontinuous operation tends to increase output voltage of the converter towards Vin

\[
\delta_d = \frac{2L I_{out}}{Vin d T}.
\]

\[
\frac{V_{out}}{V_{in}} = \frac{d^2}{d^2 + \left(\frac{2L I_{out}}{Vin T}\right)}.
\]

Fig. Output voltage vs. current.

Rakshit Agarwal- IIT Madras
Boost converter

- When Transistor “ON”
 \[V_x = 0 \]
- When Transistor “OFF”
 \[V_x = V_o \]
- For Steady State
 Voltage across the inductor & average must be zero for the average current.
 \[
 \dot{V}_{in} t_{on} + (V_{in} - V_o) t_{off} = 0
 \]
 This can be rearranged to give,
 \[
 \frac{V_o}{V_{in}} = \frac{T}{t_{off}} = \frac{1}{(1-D)}
 \]
 - Since, the duty ratio "D" is b/w 0 and 1 thus the output voltage must always be higher than the input voltage in magnitude.
Buck Boost Converter

- When Transistor “ON”
 \[V_x = V_{in} \]

- When Transistor “OFF”
 \[V_x = V_o \]

- For Steady State Voltage across the inductor & average must be zero for the average current
 \[V_{in} \cdot t_{ON} + V_o \cdot t_{OFF} = 0 \]

- This can be arranged to give voltage ration as
 \[\frac{V_o}{V_{in}} = \frac{D}{(1 - D)} \]

- Since, the duty ratio "D" is between 0 and 1 hence the output voltage may be higher or lower than the input voltage in magnitude

Towards Highly Efficient Monolithic DC/DC Converter

Rakshit Agarwal- IIT Madras
Comparison Of Different Converters

- Only the buck converter shows a linear relationship.
- The buck-boost can reduce or increase the voltage ratio with unit gain for a duty ratio of 50%.

Buck converter:
\[
\frac{V_o}{V_{in}} = \frac{ton}{T}
\]

Boost converter:
\[
\frac{V_o}{V_{in}} = \frac{T}{t_{off}} = \frac{1}{(1-D)}
\]

Buck-boost converter:
\[
\frac{V_o}{V_{in}} = \frac{D}{(1-D)}
\]
Towards Highly Efficient Monolithic DC/DC Converter

Outline

• Introduction
• Types of switching regulators
 • Buck converter
 • Boost converter
 • Buck-Boost converter
• Structure of monolithic converter
• Method of operation of various parts of the converter
• Integration of inductor on chip
• Integration of capacitor on chip
• Power losses in the converter
• Power flow analysis
• Issues in monolithic DC/DC converter
• Techniques to improve performance
 • Light load efficiency
Monolithic integrated DC/DC converter

Why Monolithic DC/DC Converter?

- Decrease the size & weight of the portable devices.
- Miniaturization of the power modules.
 Integrating a DC-DC converter can potentially lower the parasitic losses as interconnect b/w DC-DC converter & microprocessor is reduced. Need for on chip, point-of-load (PoL) power conversion.

Challenges

- Tight area constraint for the on-chip integration of inductive & capacitive elements.
- Poor parasitic impedance characteristics.
- High frequency means low value & physical size of passive devices required.

Towards Highly Efficient Monolithic DC/DC Converter
Monolithic integrated DC/DC converter

Applications

- Battery operated portable electronic devices like laptops, cell phones, PDAs (Personal digital assistants) & other palm
Towards Highly Efficient Monolithic DC/DC Converter

Monolithic integrated DC/DC converter

- Structure of Current mode Buck Converter
Towards Highly Efficient Monolithic DC/DC Converter

Outline

• Introduction
• Types of switching regulators
 • Buck converter
 • Boost converter
 • Buck-Boost converter
• Structure of monolithic converter
• Method of operation of various parts of the converter
• Integration of inductor on chip
• Integration of capacitor on chip
• Power losses in the converter
• Power flow analysis
• Issues in monolithic DC/DC converter
• Techniques to improve performance
 • Light load efficiency
Towards Highly Efficient Monolithic DC/DC Converter

Power Stage: Inductors on chip

- MEMS based inductors.
 - Use iron-based alloy plated on Si substrate.
 - Spirals made of 1µm Al-Cu isolated from ground plane by 0.5 µm of SiO2.
 - The magnetic film surrounding metal is amorphous CoZrTa alloy that exhibits:
 - Small hysteresis losses.
 - Withstand temperature up to 450°C.
 - Cut off frequency of approx. 1.4GHz.
- Superior higher frequency & saturation characteristics.
- Reduces size & parasitic effects.
- Performs at frequency up to & beyond 10 MHz.
- Magnetic material below & above spirals reduces straying of magnetic flux.
- One layer of magnetic material increases inductance by 36-50% & two layers by 100-500%.

Rakshit Agarwal- IIT Madras
Power Stage: Capacitors on chip

- Limited area overhead - Filter capacitance integrated on a microprocessor is limited.
- Ranges between 100nF –1nF.
- As capacitance decreased
 - Filter inductance & switching frequency both increased to satisfy output voltage & current.
 - Switching & conduction power dissipation of power MOSFETS & filter inductor increases.
 - Efficiency degrades.
Towards Highly Efficient Monolithic DC/DC Converter

Monolithic integrated DC/DC converter

- Structure of Current mode Buck Converter

Rakshit Agarwal- IIT Madras
Towards Highly Efficient Monolithic DC/DC Converter

Compensator

Cascode OTA (Operational Trans-conductance Amplifier)

- For Power stage of current mode converter
 - Control-to-output transfer function has real poles.
 - Pole from output filtering capacitor heavily dependent on equivalent resistance of load RL.
 - Poor frequency response.
- Pole Zero Cancellation preferred
 - Band width can be extended.
 - Speed up response time.
- Transfer function of Compensator is
 \[
 A(s) = \frac{V_a}{bV_o} \approx g_m R_o \frac{1 + sC_c R_Z}{1 + sC_c R_o}
 \]

- where, \(g_m\) - Trans-conductance of OTA
- \(R_o\) - Output resistance of the OTA.

![Schematic of Pole Zero Cancellation Compensator](image)
Compensator

\textbf{gm & Ro}

- Important for frequency compensation.
- Determine gain & phase margin of DC/DC converter.
- Depend on biasing current.

\textbf{Result}

- Average -20 dB/dec closed loop-gain.
- Sufficient phase margin below unity gain frequency.
- Two Stage OTA
 - Higher gain
 - Large output swing.
Towards Highly Efficient Monolithic DC/DC Converter

Cascode OTA

- Circuit Implementation

- Single stage amplifier.
- High gain and only one dominant pole

Schematic for Cascode OTA

Rakshit Agarwal- IIT Madras
Towards Highly Efficient Monolithic DC/DC Converter

Monolithic integrated DC/DC converter

- Structure of Current mode Buck Converter
Towards Highly Efficient Monolithic DC/DC Converter

On Chip Current Sensing Technique

Schematic for on chip current sensing circuit

Rakshit Agarwal- IIT Madras
On Chip Current Sensing Technique

- Aspect ratio of M2 << M1 in power stage.
- Op amp enforce same voltage at node A & B.
- Output current IO flows through M1.
- Switch MS1 is shorted.
- $V_{DS}(M1) = V_{DS}(M2)$.
- $I_{S}(\text{Sensing current}) << IO$.
- $I_2 << IS$.
- V_{sense} in control feedback loop.
- Mrs should operate in saturation.
- The sensing scheme needs to be realized with high bandwidth and low power consumption.
On Chip Current Sensing Technique

Characteristics

- $V_{\text{sense}} = I_{\text{sense}}$ $R_{\text{sense}} = I_L/R_{\text{sense}}/1000$
- High gain amplifier required for accurate current sensing
- Accuracy of sensed current depend on
 - current mirror M_1 & M_2.
 - On-chip resistor R_{sense}.

Matching of M_1 & M_2 can be done by

- Common centroid technique
- M_2 is surrounded by 500 fingers of transistor M_1
On Chip Current Sensing Technique

- Advantages
 - I_{sense} small hence, power loss reduced in the sensing circuit.
 - Improve efficiency of converter.
- On-chip current-sensing circuit can be extended to sense power NMOS transistor by building complementary circuit for other topologies – boost converter & buck-boost converter.
Towards Highly Efficient Monolithic DC/DC Converter

Monolithic integrated DC/DC converter

- Structure of Current mode Buck Converter
Towards Highly Efficient Monolithic DC/DC Converter

Modulator (comparator)

Needed in both

- modulator in feedback control (PWM control).
- hysteretic comparator in the Oscillator & ramp generator circuit.
- Implemented by a source-coupled differential pair with positive feedback to provide a high gain.
- Use of Inverter Chains

![Schematic of the comparator](image)
Oscillator and Ramp Generator

Used to generate
- The clock & ramp signals for PWM control.
- Compensation slope for current mode converter.

Consists of
- Voltage-to-current (V-I) converter.
- Hysteretic comparator.

Clock freq and slope of compensation ramp
- Synchronized with each other
- Depend on Vref, Ct, Rt, VH & VL.
- Rt & Ct can be off-chip components- Switching frequency can be adjusted for different applications.
Towards Highly Efficient Monolithic DC/DC Converter

Oscillator and Ramp Generator

Schematic of oscillator and ramp generator
Towards Highly Efficient Monolithic DC/DC Converter

Outline

- Introduction
- Types of switching regulators
 - Buck converter
 - Boost converter
 - Buck-Boost converter
- Structure of monolithic converter
- Method of operation of various parts of the converter
- Integration of inductor on chip
- Integration of capacitor on chip
- Power losses in the converter
- Power flow analysis
- Issues in monolithic DC/DC converter
- Techniques to improve performance
 - Light load efficiency
Power Losses in DC/DC Converter

- Conduction Loss
- Switching Loss
- Shoot through current Loss (Related to design of buffer stage to drive transistors)
- Significant energy dissipated in parasitic impedances of circuit board interconnect & discrete components of the regulator.
- **Conduction Losses**: Caused by the parasitic resistive impedances.
- **Switching Losses**: Due to parasitic capacitive impedances of circuit components.
- Power consumed by PWM feedback circuit & integrated filter capacitor is small as compared to the power consumption of the power train (the power MOSFETs, MOSFET gate drivers, the filter inductor).
Power flow analysis

- Buck converter Output
 \[V_{DD2}(t) = D \cdot V_{DD1} + V_{ripple}(t) \]
- Ripple Current
 \[\Delta i = \frac{(V_{DD1} - V_{DD2}) \cdot D}{2L \cdot f_s} \]
- Amplitude of voltage ripple,
 \[\Delta V_{DD2} = \frac{(V_{DD1} - V_{DD2}) \cdot D}{16LCf_s^2} = \frac{\Delta i}{8Cf_s} \]

where, L - Filter inductance.
C - Filter Capacitor.
fs - Switching frequency.

Fig. Inductor current \(i_L(t)\), output voltage \(V_{DD2}(t)\), capacitor current \(i_C(t)\) waveforms.
Power flow analysis

MOSEFETs Related Power

- Combination of conduction loss & dynamic switching loss.
- Conduction power - Dissipated in series resistance of transistor.
- Dynamic Power - Dissipated in each switching cycle of charging/discharging of gate oxide, gate-to-source/drain overlap & drain-to-body junction capacitance of MOSFET.
- MOSFET width optimized to minimize power dissipation.

Energy consumption also due to:

- Series resistance of filter inductor.
- Stray capacitance of filter inductor
Towards Highly Efficient Monolithic DC/DC Converter

Power flow analysis

- **Total Power Consumption of Buck Converter**

\[
P_{\text{buck}} = P_{\text{tot,MOS (opt)}} + P_{\text{tot,inductor}} + P_{\text{tot,capacitor}}
\]

\[
P_{\text{buck}} = a \sqrt{(I^2 + \frac{i^2}{3}) f_s} + b \left(\frac{I^2}{\Delta i f_s} + \frac{\Delta i}{3 f_s} + \frac{C_{\text{Lo}} V_{\text{DDL}}^2}{R_{\text{Lo}} \Delta i} \right) + df_s \Delta i
\]

- Strongly function of switching frequency (fs) & ripple current (Δi).
- Ptot, capacitor increases as fs & Δi increases.
- Ptot, inductor decreases as fs & Δi increases.
- Ptot, capacitor-negligibly small (less than 1%) as compared to inductor & MOSFET power.

Rakshit Agarwal- IIT Madras
Power flow analysis

- Efficiency

\[\eta = 100 \times \frac{P_{\text{Load}}}{P_{\text{Load}} + P_{\text{buck}}} \]

\[P_{\text{buck}} = a \sqrt{(I^2 + \frac{i^2}{3}) f_s + b \left(\frac{I^2}{\Delta i f_s} + \frac{\Delta i}{3 f_s} + \frac{C_{\text{Lo}} V_{\text{DDL}}^2}{R_{\text{Lo}} \Delta i} \right)} + df_s \Delta i \]

- Low \(f_s \) & \(\Delta i \) - Power dissipation mainly in the Inductor.

- As \(f_s \) & \(\Delta i \) increases - Inductor Loss decreases
 Parasitic Loss increases
 MOSFET Power Loss increases
Efficiency Analysis

As the filter capacitance decreases

- The filter inductance & switching frequency are both increasing to satisfy the output voltage and current requirements.
- Both the switching and conduction power dissipation of the power MOSFETs and the filter inductor increases.
- Thereby degrading the efficiency.

Major challenges for a monolithic switching DC-DC converter

- The area occupied by the integrated filter capacitor.
- The effect of the parasitic impedance characteristics of the integrated inductors on the overall efficiency characteristics of a switching DC-DC converter.
Light load efficiency (to improve efficiency)

- Full loading not present for prolonged periods.
- Rather devices run at light loads (stand-by mode) for most of the time.
- Region I
 - Conduction losses dominate.
- Region II
 - Switching losses proportional to load current, input voltage, switching frequency.
- Region III
 - Gate-drive losses while charging /discharging gate capacitances of power transistors during switching transition.

Decreasing Switching Freq best way to Reduce Total Loss
Issues with monolithic DC/DC converter

- High efficiency with large input voltage range.
- High performance system-on-chip (SOC) systems.
- Dynamic power management.
- Fast dynamic response.
- Low power consumption: low stand by power.
- Need to provide robust output voltage regulation.
- Maximum efficiency.
- Minimize ripple noise on input & output.
- Minimize cost.
- To have accurate sensed current for current mode PWM controller.
- Reduce supply voltage demand, greater amount of current from external power supplies.
- Voltage scaling capability.
Towards Highly Efficient Monolithic DC/DC Converter

References

Books

Research Papers
IISB – Power Electronic Systems

Broad spectrum of competencies for system solutions from one source

- Development of novel devices
- Development of new materials and joining technologies
- Simulation
- Mechatronics, Electrical Eng.
- Construction
- Materials Science
- Circuit design
- Software
- Electrical Eng.

Nano-Ag sinter layer
DCB Chip
Key components for the cars of tomorrow

High power loads
- x-by-wire
- active suspension
- electromagnetic valves
- climate compressor

14V Battery

14V Powernet

Traction energy storage
UltraCaps, NiMH, Li-Ion,...

Fuel cell

Mobile power station

Hybrid drive

Backbone

AC

DC

200...500V

40...100kW

230V, 400V

120...400V

6...100kW

1...3 kW

IISB – Power Electronic Systems

Application focus on automotive power electronics
Hybrid motors:
Mechatronic integration of a 100kVA electric motor into a gearbox –
2nd generation of development

- Novel and structure-flexible devices
- New constructive approaches for the 3D integration of power electronics into complex mechanical structures
- Use of software tools for integrated 3D system design (concurrent engineering)
- Optimized thermal management

Power density record
75 kVA / dm3
IISB – Power Electronic Systems

DC/DC converters for traction energy management

- 70 kW
- 0.15 kW/dm³
- 5 kW/dm³
- 70 kW
- Increase of power density
- Increase of switching frequency
- Optimized circuit topologies - »Silicon-instead-of-passives«
- New devices and materials
- Multifunctional integration
- 25 kW/dm³
- 100 kW in notebook format
IISB – Power Electronic Systems

High power density power convertors for fuel cell hybrid cars

Successful first test run:
Stuttgart, February 2005
IISB – Power Electronic Systems

70kW DC/DC converter for the energy management in hybrid and fuel cell vehicles

HyGenius F600
Thank You
Pulse Width Generator

- S=1, R=1 is a forbidden state for the SR latch.
- At startup, O/p of compensator Vc is low compared with sum of the ramp and sensed signal.
- Hence, R is always high.
- However, the given circuit ensures that RS latch do not reach forbidden state.
- R and S do not go high simultaneously.
Buffer

- Required for receiving and amplifying the signal produced by the control circuit.
- Poorly designed buffer will lead to shoot-through current will occur during each switching transition.
- Hence, buffer without short-circuit power consumption is needed.
- Power rails of the buffer should be laid-out carefully & resistances to be minimized so that the converter efficiency do not degrade.
Power flow analysis

Filter Inductor Power

Energy consumption due to:

• Series resistance of filter inductor.
• Stray capacitance of filter inductor.

Total power consumption in inductor is:

\[
P_{\text{tot, inductor}} = b \left(\frac{I^2}{\Delta f_s} + \frac{\Delta i}{3f_s} + \frac{C_{Lo} V_{DD1}^2}{R_{Lo} \Delta i} \right)
\]

\[
b = \frac{(V_{DD1} - V_{DD2}) D R_{Lo}}{2}
\]

Where, CLo - Parasitic stray capacitance per nH inductance.
RLo - Parasitic series resistance per nH inductance
Towards Highly Efficient Monolithic DC/DC Converter

Power flow analysis

• **Filter Capacitor Related Power**

• Integrated Capacitor implemented utilizing Gate Oxide Capacitance of MOSFET

• Total Power dissipation of a filter Capacitor is:

\[P_{\text{tot, capacitor}} = df_s \Delta i \]

\[d = \frac{8R_{ocap}L_{cap}C_o \Delta V_{DD2}}{3} \]

Where
- \(R_{ocap} \) - Series capacitance of MOSFET with 1\(\mu \)m width.
- \(C_o \) - Gate oxide capacitance per \(\mu \)m\(^2\).
- \(L_{cap} \) - Channel length of the MOSFET.
V-I Converter

- In current mode converters, compensation ramp add with inductor current signal to avoid sub harmonic oscillations.
- V-I designed to convert ramp signal and sensing inductor signal into current.

Schematic of V-I Converter

Rakshit Agarwal- IIT Madras
Towards Highly Efficient Monolithic DC/DC Converter

V-I Converter

- Now, $VA = Vin + VSG1$
- For 2nd stage V-I converter
 - Trans-conductance, $G_{m2} = \frac{l_1}{V_A} \approx \frac{g_{m2}}{1 + g_{m2}R_s} \approx \frac{1}{R_s}$ for $g_{m2}R_s \gg 1$
 - Then, the output current is given by
 $$I_1 = \frac{V_A}{R_s} = \frac{Vin + V_{SG1}}{R_s}$$
- Need to eliminate non-ideal term, V_{SG1}
- Now, $$I_2 = \frac{V_{SG3}}{R_s}$$
- Hence, output current I_{out},
 $$I_{out} = I_1 - I_2 = \left(\frac{Vin}{R_s} + \frac{V_{SG3}}{R_s}\right) - \frac{V_{SG1}}{R_s} = \frac{Vin}{R_s} \alpha Vin$$
V-I Converter

- Now, sensing voltage, $V_{sense} = Isense \times R_{sense}$.
- Hence, output current

$$I_{out} = \frac{V_{sense}}{R_s} = I_{sense} \left(\frac{R_{sense}}{R_s} \right)$$

- I_{out} and I_{sense} do not depend on value of R_s and R_{sense}, rather on the ratio.
 - Can be easily controlled